Устройство и эксплуатация безынерционной катушки. Катушка на спиннинг для ловли щуки Что делает катушка индуктивности в цепи

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца - Джоуля.

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р , а изменение энергии в магнитном поле - реактивной мощностью Q .

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.

Схема замещения катушки с последовательным соединением элементов

В схеме с последовательным соединением элементов реальная катушка характеризуется активным сопротивлением R и индуктивностью L.

Активное сопротивление определяется величиной мощности потерь

R = P/I 2

а индуктивность - конструкцией катушки. Предположим, что ток в катушке (рис. 13.9, а) выражается уравнением i = I m sinωt . Требуется определить напряжение в цепи и мощность.
При переменном токе в катушке возникает э. д. с. самоиндукции e L поэтому ток зависит от действия приложенного напряжения и эдс e L. Уравнение электрического равновесия цепи, составленное по второму закону Кирхгофа, имеет вид:

Приложенное к катушке напряжение состоит из двух слагаемых,одно из которых u R равно падению напряжения в активном сопротивлении, а другое u L уравновешивает эдс самоиндукции.

В соответствии с этим катушку в схеме замещения можно представить активным и индуктивным сопротивлениями, соединенными последовательно (рис. 13.9, б).
Дополнительно заметим, что оба слагаемых в правой части равенства (13.12) являются синусоидальными функциями времени. Согласно выводам полученных в этих предыдущих двух ( , ) статьях получим — u R совпадает по фазе с током, U L опережает ток на 90°.

u = R*I m sinωt + ωLI m sin(ωt+π/2).

Векторная диаграмма реальной катушки и полное её сопротивление

Несовпадение по фазе слагаемых в выражении (13.12) затрудняет определение амплитуды и действующей величины приложенного к цепи напряжения U. Поэтому воспользуемся векторным способом сложения синусоидальных величин. Амплитуды составляющих общего напряжения

U mR = RI m ; U mL = ωLI m ,

а действующие величины

U R = RI; U L = X L I .

Вектор общего напряжения

U = U R + U L

Для того чтобы найти величину вектора U , построим векторную диаграмму (рис. 13.10, а), предварительно выбрав масштабы тока Mi и напряжения Мu.

За исходный вектор диаграммы принимаем вектор тока I . Направление этого вектора совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза заданного тока Ψi =0). Как и ранее, эту ось удобно (но не обязательно) направить по горизонтали.

Вектор U R по направлению совпадает с вектором тока I , а вектор U L направлен перпендикулярно вектору I с положительным углом.

Из диаграммы видно, что вектор тока I общего напряжения U отражает вектор тока I на угол φ >0, но φ <90°, а по величине равен гипотенузе прямоугольного треугольника, катетами которого являются векторы падений напряжения в активном и индуктивном сопротивлениях U R и U L :

U R = Ucosφ

Проекция вектора напряжения U на направление вектора тока называется активной составляющей вектора напряжения и обозначается U a . Для катушки по схеме рис. 13.9 при U a = U R

U = Usinφ (13.14)

Проекция вектора напряжения U на направление, перпендикулярное вектору тока, называется реактивной составляющей вектора напряжения и обозначается U p . Для катушки U p = U L

При токе i = Imsinωt уравнение напряжения можно записать на основании векторной диаграммы в виде

U = U m sin(ωt+φ)

Стороны треугольника напряжений, выраженные в единицах напряжения, разделим на ток I . Получим подобный треугольник сопротивлений (рис. 13.10, б), катетами которого являются активное R = U R /I и индуктивное X L = U L /I , сопротивления, а гипотенузой величина Z = U/I .

Отношение действующего напряжения к действующему току данной цепи называется полным сопротивлением цепи.
Стороны треугольника сопротивлений нельзя считать векторами, так как сопротивления не являются функциями времени.
Из треугольника сопротивлений следует

Понятие о полном сопротивлении цепи Z позволяет выразить связь между действующими величинами напряжения и тока формулой, подобной формуле Ома:

Из треугольников сопротивления и напряжения определяются

cosφ = U R /U = R/Z; sinφ = U L /U = X L /Z; tgφ = U L /U R = X L /R. (13.18)

Мощность реальной катушки

Мгновенная мощность катушки

p = ui = U m sin(ωt+φ) * I m sinωt

Из графика мгновенной мощности (рис. 13.11) видно, что в течение периода мощность четыре раза меняет знак; следовательно, направление потока энергии и в данном случае в течение периода меняется. Относительно некоторой оси t’ , сдвинутой параллельно оси t на величину Р, график мгновенно мощности является синусоидальной функцией двойной частоты.
При положительном значении мощности энергия переходит от источника в приемник, а при отрицательном - наоборот. Нетрудно заметить, что количество энергии, поступившей в приемник (положительная площадь), больше возвращенной обратно (отрицательная площадь).

Следовательно, в цепи с активным сопротивлением и индуктивностью часть энергии, поступающей от генератора, необратимо превращается в другой вид энергии, но некоторая часть возвращается обратно. Этот процесс повторяется в каждый период тока, поэтому в цепи наряду с непрерывным превращением электрической энергии в другой вид энергии (активная энергия) часть ее совершает колебания между источником и приемником (реактивная энергия).

Скорость необратимого процесса преобразования энергии оценивается средней мощностью за период, или активной мощностью Р, скорость обменного процесса характеризуется реактивной мощностью Q.

Согласно выводам полученных в этих предыдущих ( , ) статьях — в активном сопротивлении P = U R I Q = 0; а в индуктивном Р = 0; Q = U L I.

Активная мощность всей цепи равна активной мощности в сопротивлении R, а реактивная - реактивной мощности в индуктивном сопротивлении X L . Подставляя значения U R = Ucosφ и U L = Usinφ , определяемые из треугольника напряжений по формулам (13.18), получим:

P = UIcosφ (13.19)

Q = UIsinφ (13.20)

Кроме активной и реактивной мощностей пользуются понятием полной мощности S , которая определяется произведением действующих величин напряжения и тока цепи;

S = UI = I 2 Z (13.21)

Величину полной мощности можно получить из выражения (13.22), которое легко доказать на основании формул (13.19) и (13.20):

Для реальной катушки можно составить и другую расчетную схему - с параллельным соединением двух ветвей: с активной G и индуктивной B L проводимостями. На рис. 13.12, б эта схема показана в сравнении со схемой последовательного соединения активного и индуктивного сопротивлений (рис. 13.12, а), рассмотренной ранее.
Покажем, что схемы рис. 13.12, а, б эквивалентны в том смысле, что при одинаковом напряжении сохраняются неизменными ток в неразветвленной части цепи, активная и реактивная мощности.

Вектор тока I можно разложить на две взаимно перпендикулярные составляющие и в соответствии со схемой и векторной диаграммой на рис. 13.12, б выразить векторным равенством

I = I G + I L (13.24)

Для схемы параллельного соединения активного и индуктивного элементов общим является приложенное напряжение, а токи разные: I G -ток в ветви с активной проводимостью, по фазе совпадает с напряжением; I L - ток в ветви с индуктивной проводимостью, по фазе отстает от напряжения на угол 90°.

Вектор тока I и его составляющие I G и I L образуют прямоугольный треугольник, поэтому

Составляющая тока в активном элементе

I G = Icosφ

Проекция вектора тока I на направление напряжения называется активной составляющей вектора тока и обозначается I а . Для катушки по схеме на рис. 13.12, б I a = I G .

Составляющая тока в реактивном элементе

I L = Isinφ

Проекция вектора тока I на направление, перпендикулярное вектору напряжения, называется реактивной составляющей вектора тока и обозначается . Для катушки I р = I L .

Стороны треугольника токов, выраженные в единицах тока, можно разделить на напряжение U и получить подобный треугольник проводимостей, катетами которого являются активная G = I G /U и индуктивная В L = I L /U проводимости, а гипотенузой - величина Y = I/U , называемая полной проводимостью цепи.

Из треугольника проводимостей и с учетом ранее полученных выражений из треугольника сопротивлений получим

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самого начала, то есть с самых основ и темой сегодняшней статьи будет принцип работы и основные характеристики катушек индуктивности . Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – и .

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку:), то есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный 🙂

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь.

Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать. Напряжения на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока .

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Собственно, график нам и демонстрирует эту зависимость 🙂 Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции . Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: , title="Rendered by QuickLaTeX.com" height="12" width="39" style="vertical-align: 0px;">, участок 3-4: title="Rendered by QuickLaTeX.com" height="12" width="41" style="vertical-align: 0px;">, ). Таким образом, ЭДС самоиндукции препятствует возрастанию тока (индукционные токи направлены “навстречу” току источника). А на участках 2-3 и 4-5 все наоборот – ток убывает, а ЭДС препятствует убыванию тока (поскольку индукционные токи будут направлены в ту же сторону, что и ток источника и будут частично компенсировать уменьшение тока). И в итоге мы приходим к очень интересному факту – катушка индуктивности оказывает сопротивление переменному току, протекающему по цепи. А значит она имеет сопротивление, которое называется индуктивным или реактивным и вычисляется следующим образом:

Где – круговая частота: . – это .

Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение ? Здесь все на самом деле просто 🙂 По 2-му закону Кирхгофа:

А следовательно:

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Как видите ток и напряжение сдвинуты по фазе () друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

При включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между напряжением и током, при этом ток отстает по фазе от напряжения на четверть периода.

Вот и с включением катушки в цепь переменного тока мы разобрались 🙂

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому дальнейший разговор о катушках индуктивности мы будем вести в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

На что стоит обращать внимание при выборе безынерционной катушки?

  1. Плавность хода
  2. Размер катушки
  3. Шпуля (материал покрытия, размер, глубина, форма)
  4. Удобство рукоятки и ее длина
  5. Количество подшипников
  6. Фрикционный тормоз (чувствительность, расположение)
  7. Байтранер (если требуется)
  8. Качество лесоукладывания (ролик лесоукладывателя)
  9. Общая жесткость корпуса

Рассмотрим представленные параметры более подробно.

Плавность хода катушки

Плавность является предельно важным параметром, так как плавность влияет на чувствительность, и на равномерность наматывания лески на шпулю. На плавность катушки влияет количество и качество внутренних подшипников, сбалансированность ротора, жесткость корпуса и прочие элементы механизма.

Плохо намотанная леска будет вызывать дерганность приманки, и также негативно влияет на дальность заброса приманки. Да и сам процесс выматывания будет не самым приятным при плохой плавности хода.

Стоит отметить, что использование слишком больших грузов при выматывании, может ускорить стирание внутренних деталей катушки, что ухудшит ее плавность.

Размер шпули

Размер шпули зависит от способа ловли и толщины лески. На катушках можно встретить некоторые значения 1000, 2000, 2500, 3000, 4000, 5000 и даже 12000. Число 1000 показывает, что шпуля вмещает в себя 100 метров лески толщиной 0.1 мм, а число 3000 способно вместить сто метров лески толщиной 0.3мм.

  • Для легкого спиннинга (ультралайта) обычно применяются катушки со шпулями 1000-2500.
  • Для среднего спиннинга: 2500-3500.
  • Для тяжелого спиннинга используются шпули размером 4000+.
  • Для фидерной ловли берут катушки со шпулями 2500-5000.
  • Для карпфишинга 5000+.

Размер и глубину шпули стоит подбирать в зависимости от длины и диаметра применяемой вами лески и от дальности заброса приманки.

Форма конуса шпули и глубина профиля

Глубокие шпули вмещают в себя большее количество лески, дальность заброса такими шпулями невысока, применяются для толстой плетенки или монофильной лески.

Неглубокие шпули Air Spool применяются, в основном, для тонких плетеных лесок. Обычно такие шпули имеют увеличенный диаметр.

Шпули Long Cast обычно применяются на карповых катушках. Длинная конусообразная форма шпули обеспечивает хорошую вместимость и дальний заброс.

Существуют также шпули с обратным конусом, которые применяются для спиннинговых катушек. Обратный конус исключает сброс петель и уменьшает риск запутывания лески.

Материал шпули

Шпуля может быть изготовлена или из пластмассы или из металла.

Пластмассовые шпули лучше обойти стороной, так как они быстро изнашиваются и обладают высоким трением. Плетенка на пластмассовых шпулях не применятся.

Металлические шпули создаются обычно из алюминия, более дорогие из титана или композитов. Есть также алюминиевые шпули с покрытием из нитрита титана, которые обладают очень гладкой поверхностью, износоустойчивостью и прочностью.

Катушки с алюминиевыми шпулями с твердым покрытием из титана стоят намного дороже обычных катушек.


Дужка и ролик лесоукладывателя

При откидывании дужки (при забросе) леска сходит со шпули, при закрытии дужки — сход лески останавливается. Дужка лесоукладывателя, ролик и шпуля должны быть гладкими и без заусенец.

Важно то, чтобы леска попадала прямо на специальный ролик и не зацеплялась при это ни за что.

Фрикцион

Элемент безынерционной катушки, который позволяет стравливать шнур или леску при выматывании рыбы для того, чтобы не порвать леску или губу рыбе. При сильных рывках нужно давать рыбе сматывать леску с катушки, так как рыба при этом устает и не может порвать леску. Фрикцион бывает задним, либо передним.

Для спиннинга обычно используются катушки с передним фрикционом.

Для фидера или карпфишинга используются катушки с задним фрикционом и с байтранером.

Передний фрикцион считается более чувствительным и более надежным и регулируется более тонко.

Безынерционные катушки для рыбалки (видео)

Байтранер

Байтранером называют специальный механизм спуска лески или шнура. То есть, при отведении скобы байтранера шпуля катушки начинает стравливать леску, а при обратном нажатии на скобу шпуля перестает стравливать леску, что очень удобно.

Байтранер чаще всего используется в карповой и фидерной ловле.

Байтранер можно также использовать и как сигнализатор поклевки, так как рыба во время рывка будет тянуть леску с катушки, что будет сопровождаться характерный треском, который можно услышать метров за десять-двадцать.

Вес катушки

В большинстве случаев легкость катушки является преимуществом для рыболова, легкая катушка дает большее удобство и свободу действий, да и уставать с легкой катушкой вы будете меньше.

С другой стороны, экономия на материалах деталей катушки, которые должны быть из метала, увеличивает вес катушки. Поэтому стоит искать некий баланс и знать, что надежность и долговечность катушки все же важнее чем ее легкость.

Другими словами, чем безынерционная катушка тяжелее, тем она надежней, но не всегда. Самые современные катушки могут быть изготовлены из композитных материалов, которые и прочнее и легче алюминия, но стоят при они этом намного дороже.

Вес катушки играет важную роль в общем балансе снасти. Баланс снасти - это правильный центр тяжести удилища и катушки, чем он ближе к рукоятке катушки тем лучше. Такое равновесие меньше нагружает руку и позволяет делать более эффективную проводку.

Особо легкие катушки важны в ультралайте, когда сам спиннинг и приманки максимально легкие. Средний вес катушек для ультралайта составляет 200-260 грамм.

Алюминиевые корпуса безынерционных катушек меньше деформируются под нагрузками, что увеличивает их срок службы.

Нагрузка на катушку

Касательно нагрузки стоит отметить только то, что чем больше катушка тем больше ее внутренние детали, и как следствия, по идеи, она должна выдерживать большие нагрузки и иметь возможность установки больших шпуль. Вот почему карповые катушки делаются такими большими.

На нагрузку на фрикционный тормоз влияет еще и передаточное число безынерционной катушки. Чем число меньше, тем катушка более мощная тяговая.

Пример: катушка с передаточным числом 4:1 будет мощнее аналогичной катушки с числом 5.5:1.

Ручки катушки

Рукоятки бывают следующих видов:

  1. ввинчивающиеся
  2. крепящиеся винтом
  3. с заклепкой.

Особых различий в ходе эксплуатации у видов крепления нет, но вот сама рукоятка должна быть удобной и надежной. Отдается предпочтение прорезиненным и без существенных люфтов рукояткам из метала или твердого пластика которые не прогибаются под нагрузкой.

при выборе безынерционной катушки обращайте внимание на люфты ручки, чем люфты меньше, тем лучше.

Подшипники безынерционной катушки

Тут стоит отметить, что чем их больше тем лучше, так как детали катушки будут обладать меньшим трением и соответственно будут более долговечными. Да и в целом катушка будет более плавной и приятной.

Подшипники катушек отличаются качеством и формой. Существуют шариковые и роликовые подшипники. Роликовые подшипники считаются более эффективными.

Вот основные параметры катушек на которые нужно обращать внимание. Сравнивая похожие катушки, стоит отдать предпочтение катушкам фирм Daiwa, Shimano и Ryobi так как они уже давно считаются одними из самых качественных и надежных.

Обзор бюджетных безынерцилнных катушек

Статьи по теме:

Оснастки для спиннинга (Техас, Каролина, дропшот)

Рыболовные узлы и поводки, прочность узлов

Ловля на поверхностные приманки (глиссеры)

Ловля на пропбейт (приманка с пропеллером)

Как выбрать поппер, на что обращать внимание при выборе

Ловля на девон(уникальная блесна с пропеллером)

Cпиннербейт своими руками, (изготовление и ловля)

Рыболовные самоделки своими руками

Обзор лучших балансиров для зимней рыбалки


Ловля на мормышки: разновидности, снасти, техника ловли


Виды рыбопоисковых эхолотов для рыбалки

Обзор алюминиевых лодок для рыбалки


Стандартная конструкция катушки индуктивности состоит из изолированного провода с одной или несколькими жилами, намотанными в виде спирали на каркас из диэлектрика, имеющего прямоугольную, цилиндрическую или форму. Иногда, конструкции катушек бывают бескаркасными. Наматывание провода производится в один или несколько слоев.

Для того, чтобы увеличить индуктивность, используются сердечники из ферромагнитов. Они же позволяют изменять индуктивность в определенных пределах. Не всем до конца понятно, для чего нужна катушка индуктивности. Ее используют в электрических цепях, как хороший проводник постоянного тока. Однако, при возникновении самоиндукции, возникает сопротивление, препятствующее прохождению переменного тока.

Разновидности катушек индуктивности

Существует несколько вариантов конструкций катушек индуктивности, свойства которых определяют и сферу их использования. Например, применение контурных катушек индуктивности вместе с конденсаторами, позволяют получать резонансные контуры. Они отличаются высокой стабильностью, качеством и точностью.

Катушки связи обеспечивают индуктивную связь отдельных цепей и каскадов. Таким образом, становится возможным деление базы и цепей по постоянному току. Здесь не требуется высокой точностью, поэтому, для этих катушек используется тонкий провод, наматываемый в две небольшие обмотки. Параметры данных приборов определяются в соответствии с индуктивностью и коэффициентом связи.

Некоторые катушки используются в качестве вариометров. Во время эксплуатации их индуктивность может изменяться, что позволяет успешно перестраивать колебательные контуры. Весь прибор включает в себя две последовательно соединенных катушки. Подвижная катушка вращается внутри неподвижной катушки, тем самым, создавая изменение индуктивности. Фактически, они являются статором и ротором. Если их положение изменится, то поменяется и значение самоиндукции. В результате, индуктивность прибора может измениться в 4-5 раз.

В виде дросселей используются те приборы, у которых при переменном токе отмечается высокое сопротивление, а при постоянном - очень низкое. Благодаря этому свойству, они используются в радиотехнических устройствах в качестве фильтрующих элементов. При частоте 50-60 герц для изготовления их сердечников применяется трансформаторная сталь. Если частота имеет более высокое значение, то сердечники изготавливаются из феррита или пермаллоя. Отдельные разновидности дросселей можно наблюдать в виде так называемых бочонков, подавляющих помехи на проводах.

Где применяются катушки индуктивности

Сфера применения каждого такого прибора, тесно связана с особенностями его конструкции. Поэтому нужно обязательно учитывать ее индивидуальные свойства и технические характеристики.

Совместно с резисторами или , катушки задействованы в различных цепях, имеющих частотно-зависимые свойства. Прежде всего, это фильтры, колебательные контуры, цепи обратной связи и прочее. Все виды этих приборов способствуют накоплению энергии, преобразованию уровней напряжения в импульсном стабилизаторе.

При индуктивной связи между собой двух и более катушек, происходит образование трансформатора. Эти приборы могут использоваться, как электромагниты, а также, как источник энергии, возбуждающий индуктивно связанную плазму.

Индуктивные катушки успешно используются в радиотехнике, в качестве излучателя и приемника в конструкциях кольцевых и , работающих с электромагнитными волнами.

Б олее чем полвека эволюции карбюраторных бензиновых моторов с контактной системой зажигания катушка (или как ее часто называли шоферы прошлых лет – «бобина») практически не меняла конструкцию и облик, представляя собой высоковольтный трансформатор в металлическом герметичном стакане, заполненном трансформаторным маслом для улучшения изоляции между витками обмоток и охлаждения.

Неотъемлемым партнером катушки был трамблер – механический коммутатор низкого напряжения и распределитель высокого. Искра должна была появляться в соответствующих цилиндрах в конце такта сжатия топливовоздушной смеси – строго в определенный момент. Трамблер осуществлял и зарождение искры, и синхронизацию ее с тактами работы мотора, и распределение по свечам.

Классическая маслонаполненная катушка зажигания - «бобина» (что по-французски и означало «катушка») - была чрезвычайно надежна. От механических воздействий ее защищал стальной стакан корпуса, от перегрева – эффективный теплоотвод через заполняющее стакан масло. Однако согласно малоцензурному в оригинальном варианте стишку «Дело было не в бобине – идиот сидел в кабине…», получается, что надежная бобина таки порой подводила, даже если даже водитель не такой уж идиот…

Если посмотреть на схему контактной системы зажигания, то можно обнаружить, что заглушенный мотор мог останавливаться в любом положении коленвала, как с замкнутыми контактами прерывателя низкого напряжения в трамблере, так и с разомкнутыми. Если при предыдущем глушении мотор остановился в положении коленвала, в котором кулачок трамблера замыкал контакты прерывателя, подающего низкое напряжение на первичную обмотку катушки зажигания, то когда водитель по какой-то причине включал зажигание, не запуская мотор, и оставлял ключ в таком положении надолго, первичная обмотка катушки могла перегреться и сгореть… Ибо через нее начинал проходить постоянный ток в 8-10 ампер вместо прерывистого импульсного.

Официально катушка классического маслонаполненного типа неремонтопригодна: после сгорания обмотки она отправлялась в утиль. Однако когда-то давно на автобазах электрики умудрялись ремонтировать бобины – развальцовывали корпус, сливали масло, перематывали обмотки и собирали заново… Да, были времена!

И лишь после массового внедрения бесконтактного зажигания, при котором контакты трамблера сменились на электронные коммутаторы, проблема сгорания катушек почти исчезла. В большинстве коммутаторов было предусмотрено автоматическое отключение тока через катушку зажигания на включённом зажигании, но не запущенном двигателе. Иными словами, после включения зажигания начинался отсчет небольшого временного интервала, и если водитель за это время не заводил мотор, коммутатор автоматически выключался, защищая и катушку, и самого себя от перегрева.

Сухие катушки

Следующим этапом развития классической катушки зажигания стал отказ от маслонаполненного корпуса. «Мокрые» катушки сменились на «сухие». Конструктивно это была практически та же самая катушка, но без металлического корпуса и масла, покрытая сверху слоем эпоксидного компаунда для защиты от пыли и влаги. Работала она совместно с тем же самым трамблером, и часто в продаже можно было встретить и старые «мокрые» катушки, и новые «сухие» на одну и ту же модель авто. Они были полностью взаимозаменяемыми, соответствовали даже «уши» креплений.

Для рядового автовладельца в изменении технологии с «мокрой» на «сухую» не было, по сути, никаких преимуществ или недостатков. Если последняя, конечно, была изготовлена качественно. «Профит» получали только производители, поскольку изготовить «сухую» катушку несколько проще и дешевле. Однако если «сухие» катушки иностранных производителей автомобилей изначально продумывались и изготавливались достаточно тщательно и служили почти столько же, сколько и «мокрые», советские и российские «сухие» бобины снискали дурную славу, поскольку имели массу проблем с качеством и выходили из строя достаточно часто без каких-либо причин.

Так или иначе, сегодня «мокрые» катушки зажигания полностью уступили место «сухим», а качество последних даже отечественного производства практически не вызывает нареканий.


Были и катушки-гибриды: обычную «сухую» катушку и обычный коммутатор бесконтактного зажигания иногда объединяли в единый модуль. Такие конструкции встречались, к примеру, на моновпрысковых Фордах, Ауди и ряде других. С одной стороны, это выглядело в некоторой степени технологично, с другой – снижалась надежность и увеличивалась цена. Ведь два изрядно нагревающихся узла объединили в один, тогда как по отдельности они и охлаждались лучше, и при выходе из строя того или иного замена обходилась дешевле…

Ах да, еще в копилку специфических гибридов: на стареньких Тойотах нередко встречался вариант катушки, интегрированной прямо в распределитель трамблера! Интегрировалась она, конечно, не намертво, и при выходе из строя «бобину» можно было без труда снять и приобрести отдельно.

Модуль зажигания – отказ от трамблера

Заметная эволюция в катушечном мире произошла в период развития инжекторных моторов. Первые инжекторы имели в своем составе «частичный трамблер» – низковольтную цепь катушки уже коммутировал электронный блок управления двигателем, а вот искру по цилиндрам по-прежнему раздавал классический бегунковый распределитель, приводимый во вращение от распредвала. От этого механического узла стало возможным полностью отказаться, применив комбинированную катушку, в общем корпусе которой скрывались отдельные катушки в количестве, соответствующем числу цилиндров. Такие узлы стали называть «модулями зажигания».

Электронный блок управления двигателем (ЭБУ) содержал в себе 4 транзисторных ключа, которые поочередно подавали 12 вольт на первичные обмотки всех четырех катушек модуля зажигания, а те в свою очередь отправляли искровой импульс высокого напряжения каждая на свою свечу. Еще чаще встречаются упрощенные варианты комбинированных катушек, более технологичные и дешевые в производстве. В них в одном корпусе модуля зажигания четырёхцилиндрового мотора помещается не четыре катушки, а две, но работающие, тем не менее, на четыре свечи. В такой схеме искра на свечи подается попарно – то есть, на одну свечу из пары она приходит в нужный для воспламенения смеси момент, а на другую – вхолостую, в момент выпуска отработавших газов из этого цилиндра.

Следующим этапом развития комбинированных катушек стал перенос электронных коммутирующих ключей (транзисторов) из блока управления двигателем в корпус модуля зажигания. Вынос мощных и греющихся при работе транзисторов «на волю» улучшил температурный режим ЭБУ, а при выходе из строя какого-либо электронного ключа-коммутатора достаточно было заменить катушку, а не менять или паять сложный и дорогущий блок управления. В котором ещё часто прописаны индивидуальные для каждого авто пароли иммобилайзера и тому подобная информация.

Каждому цилиндру – по катушке!

Еще одно типичное для современных бензиновых автомобилей решение в сфере зажигания, существующее параллельно с модульными катушками, – это индивидуальные катушки для каждого цилиндра, которые устанавливаются в свечной колодец и контактируют со свечой непосредственно, без высоковольтного провода.

Первые «персональные катушки» были именно катушками, но потом в них переехала и коммутационная электроника – так же, как это произошло и с модулями зажигания. Из плюсов такого форм-фактора – отказ от высоковольтных проводов, а также возможность замены при выходе из строя только одной катушки, а не целого модуля.

Правда, стоит сказать, что в этом формате (катушки без высоковольтных проводов, монтируемые на свечу) существуют и катушки в виде единого блока, объединенные общим основанием. Такие, к примеру, любят использовать GM и PSA. Вот это воистину кошмарное техническое решение: катушки вроде бы отдельные, но при выходе из строя одной «бобины» приходится менять в сборе крупный и очень дорогой блок…

К чему мы пришли?

Классическая маслонаполненная бобина была одним из самых надежных и неубиваемых узлов в карбюраторном и ранних инжекторных автомобилях. Внезапный выход ее из строя считался редкостью. Правда, ее надежность, к сожалению, «компенсировал» неотъемлемый напарник – трамблер, а позже – и электронный коммутатор (последнее, правда, относилось только к отечественным изделиям). Пришедшие на смену «масляным» «сухие» катушки по надежности были сопоставимы, но все же несколько чаще выходили из строя без видимых причин.

Инжекторная эволюция заставила избавиться от трамблера. Так появились разнообразные конструкции, не нуждавшиеся в механическом высоковольтном распределителе – модули и отдельные катушки по числу цилиндров. Надежность таких конструкций еще более снизилась в связи с усложнением и миниатюризацией их "потрохов", а также крайне тяжелыми условиями их работы. Через несколько лет работы с постоянным нагревом от двигателя, на котором катушки были смонтированы, на защитном слое компаунда образовывались трещины, через них влага и масло попадали на высоковольтную обмотку, вызывая пробои внутри обмоток и пропуски зажигания. У отдельных катушек, которые установлены в свечных колодцах, условия работы еще более адские. Также не любят нежные современные катушки мойку моторного отсека и увеличенный зазор в электродах свечей зажигания, образующийся в результате длительной работы последних. Искра всегда ищет наиболее короткий путь, и нередко находит его внутри обмотки бобины.

В итоге на сегодняшний день наиболее надежной и правильной конструкцией из существующих и применяемых можно назвать модуль зажигания со встроенной коммутирующей электроникой, установленный на двигателе с воздушным зазором и соединенный со свечами высоковольтными проводами. Менее надежны раздельные катушки, установленные в свечных колодцах головки блока, и совсем неудачно, с моей точки зрения, решение в виде объединенных катушек на единой рампе.